publications
2022
- Ice-free tropical waterbelt for Snowball Earth events questioned by uncertain cloudsChristoph Braun, Johannes Hörner, Aiko Voigt, and Joaquim G. PintoNature Geoscience, 2022
Geological evidence of active tropical glaciers reaching sea level during the Neoproterozoic (1,000–541 Ma), suggesting a global ocean completely covered in ice, was the key observation in the development of the hard Snowball Earth hypothesis. These conditions are hard to reconcile with the survival of complex marine life through Snowball Earth glaciations, which led to alternative waterbelt scenarios where a large-scale refugium was present in the form of a narrow ice-free strip in the tropical ocean. Here we assess whether a waterbelt scenario maintained by snow-free dark sea ice at low latitudes is plausible using simulations from two climate models run with a variety of cloud treatments in combination with an energy-balance model. Our simulations show that waterbelt states are not a robust and naturally emerging feature of Neoproterozoic climate. Intense shortwave reflection by mixed-phase clouds, in addition to a low albedo of bare sea ice, is needed for geologically relevant waterbelt states. Given the large uncertainty in mixed-phase clouds and their interaction with radiation, our results strongly question the idea that waterbelt scenarios can explain the Neoproterozoic geology. Hence, Neoproterozoic life has probably faced the harsh conditions of a hard Snowball Earth.
- Snowball Earth initiation and the thermodynamics of sea iceJohannes Hörner, Aiko Voigt, and Christoph BraunJournal of Advances in Modeling Earth Systems, 2022
Snowball Earth is a hypothesized state in the deep past of Earth in which the ocean was completely or nearly completely covered by sea ice, resulting from a runaway ice-albedo feedback. Here, we address how the treatment of sea-ice thermodynamics affects the initiation of a Snowball Earth in the global climate model ICON-A run in an idealized slab-ocean aquaplanet setup. Specifically, we study the impact of vertical resolution and brine pockets of ice by comparing the 3-layer Winton and a 0-layer Semtner scheme, and we investigate the impact of limiting ice thickness to 5 m. The internal heat storage of ice is increased by higher vertical resolution and brine pockets, which weakens surface melting and increases global albedo by allowing snow and ice to persist longer into the summer season. The internal heat storage weakens the melt-ratchet effect, as is confirmed with offline simulations with the two ice schemes. The result is a substantially easier Snowball Earth initiation and an increase in the critical CO2 for Snowball initiation by 50%. Limiting ice thickness impedes Snowball initiation as the removal of excess ice leads to an artificial heat source. Yet, the impact is minor and critical CO2 is decreased by 5% only. The results show that while the sea-ice thickness limit plays only a minor role, the internal heat storage of ice represents an important factor for Snowball initiation and needs to be taken into account when modeling Snowball Earth initiation.
2020
- An idealized model sensitivity study on Dead Sea desertification with a focus on the impact on convectionSamiro Khodayar, and Johannes HoernerAtmospheric Chemistry and Physics, 2020
The Dead Sea desertification-threatened region is affected by continual lake level decline and occasional but life-endangering flash floods. Climate change has aggravated such issues in the past decades. In this study, the impact on local conditions leading to heavy precipitation from the changing conditions of the Dead Sea is investigated. Idealized sensitivity simulations with the high-resolution COSMO-CLM (COnsortium for Small-scale MOdelling and Climate Limited-area Modelling) and several numerical weather prediction (NWP) runs on an event timescale are performed on the Dead Sea area. The simulations are idealized in the sense that the Dead Sea model representation does not accurately represent the real conditions but those given by an external dataset. A reference or Dead Sea simulation covering the 2003–2013 period and a twin sensitivity or bare soil simulation in which the Dead Sea is set to bare soil are compared. NWP simulations focus on heavy precipitation events exhibiting relevant differences between the Dead Sea and the bare soil decadal realization to assess the impact on the underlying convection-related processes. The change in the conditions of the Dead Sea is seen to affect the atmospheric conditions leading to convection in two ways. (a) The local decrease in evaporation reduces moisture availability in the lower boundary layer locally and in the neighbouring regions, directly affecting atmospheric stability. Weaker updraughts characterize the drier and more stable atmosphere of the simulations in which the Dead Sea has been dried out. (b) Thermally driven wind system circulations and resulting divergence/convergence fields are altered, preventing in many occasions the initiation of convection because of the omission of convergence lines. On a decadal scale, the difference between the simulations suggests a weak decrease in evaporation, higher air temperatures and less precipitation (less than 0.5%).